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Self-consistent model of an annihilation-diffusion reaction with long-range interactions

Valeriy V. Ginzburg, Leo Radzihovsky, and Noel A. Clark
Department of Physics, University of Colorado, Boulder, Colorado 80309-0390

~Received 1 April 1996; revised manuscript received 14 August 1996!

We introduce coarse-grained hydrodynamic equations of motion for a diffusion-annihilation system with a
power-law long-range interaction. By taking into account fluctuations of the conserved order parameter —
charge density — we derive an analytically solvable approximation for the nonconserved order parameter —
total particle density. Asymptotic solutions are obtained for the case of random Gaussian initial conditions and
for system dimensionalityd>2. Large-t, intermediate-t, and small-t asymptotics were calculated and com-
pared with existing scaling theories, exact results, and simulation data.@S1063-651X~97!02901-2#

PACS number~s!: PACS: 05.60.1w, 82.40.2g, 61.30Jf
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I. INTRODUCTION

In recent years, the annihilation-diffusion problem h
generated significant interest, both theoretical and exp
mental. The annihilation-diffusion problem usually corr
sponds to that of the kinetics of particle density decay in
annihilation reactionA1A→B ~one-species annihilation!
andA1B→B ~two-species annihilation!. In the latter case
in most physical systems that one is interested in, in addi
to the thermal diffusion and kinetic annihilation, particlesA
andB are charged and interact via a power-law long-ran
interaction ~LRI!, usually of Coulomb type, although her
we will consider a more general LRI. Such physically impo
tant interaction clearly can strongly influence the annihilat
dynamics by introducing an additional time scale in the
nihilation process and can lead to a new mechanism for s
dynamics. The two-species annihilation reaction with
LRI can be studied in a variety of experiments. A therm
quench of a freely suspended liquid-crystal film from t
smectic-A to the smectic-C phase@1,2# is one experimenta
system where this annihilation process has been studie
great detail. In such experiments, immediately after quen
the singularities of the smectic director~two-dimensional
vector! field appear as positive and negative vortices int
acting ~due to elastic forces! via a logarithmic potential. As
time elapses, vortices of opposite sign slowly annihilate,
hibiting complex dynamics that is clearly and strongly infl
enced by temperature, an initial particle distribution, an
LRI that leads to an attraction between annihilating partn
Similar annihilation problems also appear in turbulent flo
superconductivity, spinodal decomposition, and many ot
condensed-matter systems. The annihilation process is
relevant to coarsening of topological defects produced b
symmetry-breaking field in particle physics models, after
early temperature quench due to the fast initial universe
pansion, a process that is thought in part to determine
large-scale structure of today’s universe.@3#

It is well known that in classical chemical kinetics, de
sity decay for both one-species and two-species annihila
is described by the kinetic rate equation~see, e.g.,@4#!

dr

dt
52Kr2, ~1!
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with the large-t asymptotics given by

r~ t !.~Kt !21, ~2!

whereK is a reaction constant. Equation~1! completely ne-
glects all spatial fluctuations and correlations of the parti
density. Although the dynamics described by Eqs.~1! and~2!
is correct above an upper critical space dimensiondUC , for
d<dUC , both diffusion and fluctuations play an importa
role, substantially slowing down the density decay. It w
indeed shown@5# that for the one-species annihilation with
out a LRI thedUC52. That is, for systems of dimensionalit
less than 2, the density decay is given by

r~ t !.r0~Dr0
~2/d!t !2d/2, ~3!

whereD is diffusion constant andr0 is the initial particle
density. Equation~3! can be understood either by invoking
single length scaling argument@5# or by using a more elabo
rate Smoluchowski approach@6,7#. For the two-species case
it was shown~Refs.@5,8–11#! that the upper critical dimen
siondUC54, and that ford,4, the large-t asymptotics is

r~ t !.~r0!
1/2~Dt !2d/4. ~4!

The decay law~4! was confirmed in several numerical sim
lations of one-, two-, and three-dimensional syste
@5,12,13#. It is important to emphasize that in order to o
serve such power-law decay, it is necessary initially to ha
an equal number of positive and negative charges, distribu
at random. If initial numbers of positive and negativ
charges are different, one should observe an exponential
sity decay to the nonvacuum equilibrium~see, e.g.,@14#!. If
the system is stirred well, i.e., long-wavelength fluctuatio
of charge density are suppressed, the decay law would
be different. We will not consider such cases in this pape

To better study the role of correlations in reactions wi
out a LRI, a description in terms of secondary quantizat
operators of creation and annihilation was proposed@15,16#.
Further developing this approach, Peliti@17# proposed an
‘‘exact’’ ~valid to all orders in perturbation expansion!
renormalization-group theory for the one-species annih
tion and Lee and Cardy@18# suggested a similar approach
the two-species annihilation, both based on the rigorous m
ter equation converted into a field-theoretic formulation.
395 © 1997 The American Physical Society
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396 55GINZBURG, RADZIHOVSKY, AND CLARK
the latter case, it was shown that the decay law~4! is an
asymptotic one for larget and smallr0. It was also rigor-
ously proven that the assumptions used in the derivation
Eq. ~4! are correct only ford>2, while for d,2, a more
elaborate renormalization-group procedure that includes
effective noise with nontrivial correlations should be carri
out.

The addition of the LRI further complicates the pictur
Equations of motion become strongly coupled via the non
cal interaction and only approximate solutions of these eq
tions can be found. Up to date, only Coulombic@19# systems
in two dimensions (d52, n51, the case corresponding t
particles interacting via a logarithmic potential on a tw
dimensional substrate or film! were studied numerically
@13,20–22# and results appear to be inconclusive. In the
simulations, the particle density exhibited a power-law de
r(t);t2n with the exponentn varying from 0.7960.04@22#
to 0.8560.05@13#. Ginzburget al.proposed a scaling theor
@13,23# suggesting that for a Coulombic (n5d21) two-
dimensional diffusion-annihilation system, annihilation e
ponent is equal to 0.85, which is close to but less than
mean-field exponentn51. Oshaninet al. @24# suggested tha
the exponent should be exactly 1; Ispolatov and Krapiv
@25# came to the same conclusion using an ‘‘inpenetra
domain’’ scaling theory. In their theoretical and compu
tional study of the defect annihilation in two-dimension
XY model, Yurkeet al. @26# argued that the annihilation ex
ponent is 1, with logarithmic correction due to the logarit
mic dependence of the mobility on the defect size. Thus
problem of annihilation behavior for the Coulombic syste
in two dimensions has not been completely resolved,
though it seems rather plausible that the final asymptotic
governed by a classical exponent 1, with possible logar
mic correction. It seems to be certain, however, that ann
lation in the three-dimensional Coulombic system has
mean-field-type final asymptotics with exponent 1.

Finally, we should point out that until recently, there h
been no discussion of the LRI other than Coulombic. R
cently, several scaling theories have been suggested to
lyze the arbitrary power-law interaction~more short ranged
than Coulombic! @23,25,27#. Such problems may arise, e.g
in describing interactions between vacancies and intersti
in a two- or three-dimensional crystal.

In this paper, we propose a self-consistent theory base
coarse-grained hydrodynamic equations of motion for p
ticle number density and charge density fields. This the
allows us to systematically calculate the dependence of
density decay law on initial conditions and to investigate
role of the LRI. It can be shown@31# that the self-consisten
approximation that we employ here is equivalent to a resu
mation of an infinite class of Feynman graphs, which ta
into account the conserved charge density fluctuations
ignore the less important nonconserved number density fl
tuations. This approximation can be further systematica
improved by the use of perturbation theory and the renorm
ization group analysis that is planned to be the subjec
future work @31#. In the limit of weak long-range interac
tions, this approach agrees well with the known theoret
results~see Refs.@5,18,28–30#! for the two-species annihila
tion A1B→B, thereby further clarifying the underlying as
sumptions that led to these results.
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The paper is organized as follows. In Sec. II we define
variables and present the equations of motion on which
analysis and results will be based. In Sec. III the se
consistent approximation is described and the asymptotic
lutions are obtained and analyzed. Finally, in Sec. IV
analyze the resulting phase diagram and discuss it in
context of the previously obtained results for vario
diffusion-annihilation systems, which are selected points
our phase diagram.

II. EQUATIONS OF MOTION

Let us consider a system consisting of two kinds of p
ticles,A andB, with A having a positive charge1q andB
having a negative charge2q. We label their time- and
position-dependent concentrations asn1(r ,t) andn2(r ,t), re-
spectively, and impose the condition th
^n1(r ,t50)&5^n2(r ,t50)&5n0. The equation of motion
for the densities is based on the generalized law of m
conservation, violated by the annihilation process

]ni~r ,t !

]t
1¹•Ji52Kn1~r ,t !n2~r ,t !, ~5!

where the mass current is given by

Ji52D¹ni~r ,t !2mqini~r ,t !¹V~r ,t ! ~6!

and

V~r ,t !5qE ddr 8
n1~r 8,t !2n2~r 8,t !

ur 82r un21 ~7!

is the electrostatic long-range potential at a pointr at time
t due to local charge fluctuations away from neutrality;n is
the power exponent of the long-range force,m is particle
mobility taken to be a constant, andq is particle charge.
Equations~5!–~7! should be solved in conjunction with ini
tial conditions forn1(r ,t50) andn2(r ,t50). Since here we
are interested in statistical averages, rather than in a dyna
solution for a given system with specific initial condition
we will focus on the density correlation functions, with a
erages over randomt50 initial conditions.

Equations~5! and ~6! represent the coarse-grained co
tinuum limit for the ‘‘real’’ equations of motion; all variables
in these equations are averaged over ‘‘elementary volum
n0

21. Thus only long-wavelength modes are actually d
scribed by these equations and therefore only intermedi
time and large-time regimes can be analyzed.

It is more natural and convenient to describe the system
terms of the particle number and charge densities. We de
the former one asr(r ,t) and the latter one asf (r ,t) and
relate them to densitiesn1 andn2 as

r~r ,t !5
1

2
@n1~r ,t !1n2~r ,t !#, ~8!

f ~r ,t !5
1

2
@n1~r ,t !2n2~r ,t !#. ~9!

Rewriting Eqs.~5!–~7! using densitiesf andr, we obtain
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55 397SELF-CONSISTENT MODEL OF AN ANNIHILATION- . . .
]r~r ,t !

]t
2D¹2r~r ,t !52K@r2~r ,t !2 f 2~r ,t !#

2Q¹S f ~r ,t !¹E ddr 8
f ~r 8,t !

ur 82r un21 D ,
~10!

] f ~r ,t !

]t
2D¹2f ~r ,t !52Q¹S r~r ,t !¹E ddr 8

f ~r 8,t !

ur 82r un21 D .
~11!

whereQ5 1
2mq

2.
In the absence of a LRI, Eqs.~10! and ~11! are those

analyzed in Refs.@5,11,18,30#. However, the presence of th
additional long-range interactions makes the analysis of t
asymptotic solutions rather nontrivial and, as we will sho
below, leads to different dynamic regimes.

It is important to note that Eqs.~10! and ~11! do not
contain noise terms on their right-hand sides. It has b
rigorously shown that such noise terms represent impor
correlations and in some cases may even become pred
nant in determining the asymptotic decay rate. In equati
of motion describing a near-equilibrium dynamics, a pow
ful fluctuation-dissipation theorem determines the form
noise correlations. In contrast, in systems far from equi
rium, such as a system of annihilating particles, it can
shown@18,31# that the effective hydrodynamic equations
motion derived from the fundametal master equations c
tain noise terms with very nontrivial correlations, of a for
that could not be easily guesseda priori. Lee and Cardy@18#
proved that in a two-species reaction without a LRI, su
noise leads only to the renormalization of the reaction r
K, but not to the change of the scaling exponents, provi
that space dimensionalityd.2. We have shown, in a simila
fashion@31#, that for systems with a LRI, the noise has
effect on the asymptotic dynamics ford.2, if the renormal-
ization of bothK andQ is implied. In addition, since Eqs
~10! and ~11! provide a coarse-grained description on t
length scale larger than the interparticle spacingr0

21/d , the
kinetic coefficients, e.g.,K, are effective coefficients tha
incorporate finite renormalization due to the correlations
short length scales.

In order to simplify further analysis, we divide each of th
equations~10! and ~11! by r0 and transform everything to
dimensionless variables as

r→r/r0 , f→ f /r0 , D→D~r0!
2/d,

K→Kr0 , r→r ~r0!
2/d, Q→Q~r0!

~n11!/d.

It is important to notice that Eq.~11! is linear with respect to
f , while Eq.~10! is quadratic with respect tof ~this points to
the system’s invariance with respect to the simultane
charge sign reversal for all particles!. In the next section, we
will describe the self-consistent approximation and its so
tions.
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III. SELF-CONSISTENT APPROXIMATION
AND SOLUTIONS OF THE EQUATIONS OF MOTION

A. Self-consistent approximation

We now make an important approximation in order
further simplify the analytical treatment of Eqs.~10! and
~11!, namely, we choose to ignore the fluctuations of t
particle densityr and concentrate on the fluctuations of t
conserved charge densityf . This assumption is somewha
similar in spirit to the approach of Glotzer and Coniglio@32#
for the problem of spinodal decomposition and to the sph
cal approximation for the Ising model in the limit o
N→`. Unlike the ‘‘classical’’ mean-field approach, how
ever, the proposed approximation does take into account
actly the charge density fluctuations, and is expected, th
fore, to describe at least some of the features of
fluctuation-dominated kinetics.

The justification of the proposed assumption lies in
simple observation that, while the average particle densit
any time is nonzero, so thatŠ(r2^r&)2‹/^r&2 is finite and
likely to be small, the average charge density is always z
and, therefore, in comparison the charge fluctuatio
Š( f2^ f &)2‹ are large. Thus we expect the former fluctuatio
to be less important that the latter, and we can approxim
the particle number density by its average~time-dependent!
value in the equations of motion without losing their impo
tant features. In a sense, our approximation is a genera
tion of an argument used by Toussaint and Wilczek@5#, in
which they based their scaling decay law on a sugges
that ^r&'A^r2&. It seems clear that the approximation
ignoring the number density fluctuations must break down
least below some upper-critical dimensiondUC since asymp-
totically r vanishes. In this case our approximation will b
valid for d.dUC for all times and in systems belowdUC it
will be a good approximation up to a crossover time beyo
which the asymptotics will be modified by the number de
sity fluctuations. Systematically taking into account these
ditional fluctuations will be a subject of future work@31#.

Taking into account the above approximation, we rewr
Eq. ~11! in Fourier representation, takingr(t) as a spatially
independent but time-dependent function

S ]

]t
1Dk21Qr~ t !k22sD f ~k,t !50, ~12!

wheres5d112n. Equation~10! in this self-consistent ap
proximation is rewritten as

dr

dt
1Kr25KE ddk

~2p!d
^ f ~k,t ! f ~2k,t !&, ~13!

where^ & denotes averaging over initial conditions.
These equations of motion have to be supplemented w

initial conditions. It is well known that the initial density
distribution plays an important role in determining the sc
ing decay law. Although the self-consistent approximati
employed here is well suited for a comprehensive study
the influence of initial conditions on the dynamics, here
limit our study to a single type of initial condition. Through
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398 55GINZBURG, RADZIHOVSKY, AND CLARK
out this paper we will focus on the dynamics initiated with
random Gaussian particle distribution, completely charac
ized by

^ f ~k,0!&50 , ~14!

^ f ~k1 ,0! f ~k2 ,0!&5D~2p!dd~d!~k11k2!, ~15!

which constrains the system to charge neutrality at all tim
and for simplicity we take the varianceD51 (5r0

2 in physi-
cal units!. For most charged experimental systems more
evant initial conditions incorporate the suppression of lo
wavelength fluctuations in charge density, which can
modeled~within, e.g., the Debye-Hu¨ckel approximation! by
D(k)5D0k

2/(k21ks
2) in Eq. ~15!.

The diffusion-only ~DO! case (Q50) and Coulombic
case (n5d21) are the simplest systems with a relative
clear, yet interesting asymptotic behavior. All the interme
ate interactions~arbitrary n and d) lead to a more compli-
cated scaling behavior, with several regimes and crossov
We will devote a subsection to each of these three case

B. Systems without long-range interactions

There are two ways of approaching the limit of ‘‘no lon
range interactions’’: by decreasing the force constantQ to 0
or by increasing the power exponentn to infinity ~interaction
with an effectively vanishing range!. Obviously, these limits
should give the same answer. For simplicity, we will s
Q50 and show that our self-consistent approximation yie
the well-known results@5–11#

r~ t !.H ~Kt !21 for d.4

~Dt !2d/4 for d,4 .
~16!

~17!

For Q50, the kinetic equation forf reduces to a simple
diffusion equation, with the solution

f ~k,t !5 f ~k,0!e2Dk2t. ~18!

Substituting this solution~18! for f (k,t) into Eq. ~13! and
taking into account the initial conditions~14! and ~15!, we
obtain

dr

dt
1Kr25

K
~112Dt !d/2

. ~19!

The exact solution expressible in terms of confluent hyp
geometric functions is possible@18#. It can also be easily
shown that Eq.~17! describes the asymptotic solution of E
~19!. This is expected since, as we argued above, the
proximations made by Toussaint and Wilczek@5# are very
similar to our self-consistent model. The case ofn→` will
be analyzed in Sec. IIID, where it will be shown that for a
n.11d/2, the decay law is asymptotically the same as
DO systems.

C. Coulombic systems

In Coulombic systems, the long-range interaction is
strongest possible that one can achieve without making
system thermodynamically unstable~systems with interac-
r-

s,

l-
-
e

-

rs.

t
s

r-

p-

r

e
e

tions stronger than Coulombic have infinite pressure a
chemical potential even if their total charge is zero!. Because
of this, one would expect the particle density decay for Co
lombic systems to be very close or equal to the mean-fi
law r(t)'(Kt)21 @33#. As we describe below, the self
consistent approximation predicts the decay exponentn51
consistent with this expectation and with some simulatio
reported in the literature@26#. However, it can be shown@31#
that a correction to this mean-field-like decay law can ar
from the number density fluctuations and noise ford<2,
both of which have been neglected in the self-consist
theory presented here.

The equation for the evolution of charge densityf for the
Coulombic systems in the self-consistent approximation
be exactly solved to yield

f ~k,t !5 f ~k,0!expS 2Dk2t2QE
0

t

r~t!dt D . ~20!

Using this solution~20! and the initial condition~14! and
~15!, r(t) can be easily shown to satisfy the differenti
equation

dr

dt
1Kr25KexpS 22QE

0

t

r~t!dt D E ddk

~2p!d

3exp~22Dk2t !, ~21!

In order to find the asymptotic solutions, we introduce
variable

Q5E
0

t

r~t!dt. ~22!

Equation~21! then transforms to

d2Q

dt2
1KS dQ

dt D
2

5exp~22QQ!
K

~112Dt !d/2
. ~23!

Let us find the ‘‘critical’’ dimensiondUC , above which the
mean-field behavior is manifested. The mean-field solut
for Q is given by

Q~ t !5
1

K ln~11Kt !1•••, ~24!

where the ellipsis corresponds to subdominant constant te
and terms decreasing with time. By counting powers oft on
the right-hand side~RHS! and the left-hand side~LHS! of
Eq. ~23!, we find that the power of the LHS is22 and the
power of the RHS is2d/222(Q/K). Obviously, for the
mean-field solution to be valid asymptotically, the power
the LHS should be larger than the power of the RHS, wh
happens for systems with dimensionality larger than the c
cal dimension,

d.dUC54S 12
Q

KD . ~25!

If Q>K, the asymptotic kinetics is determined by the slow
process, which is the annihilation, with possibly the intera
tion renormalizedK ~implicitly assumed here!, and the Cou-
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lomb interaction and diffusion are asymptotically irreleva
ForQ,K, the Coulomb interaction has an interesting effe
of continuously lowering the upper-critical dimension fro
4 ~for Q/K50, in which case ford,4 the diffusion domi-
nates givingn5d/4) down todUC given above.

In order to analyze the kinetics when space dimensio
ity d is belowdUC we employ the ‘‘steady-state’’ approxi
mation, which suggests that at long times the time deriva
on the LHS of Eq.~21! is the smallest of the three terms.
this case, the equation of motion can be written as

dQ

dt
5exp~2QQ!~112Dt !2d/4, ~26!

Q~0!50 . ~27!

An exact solution of this equation is

Q5
1

Q
lnS 11

Q

2D~12d/4!
~$112Dt%12d/421! D ~28!

and

r5Q̇. ~29!

It can be easily shown that for larget, the asymptotic solu-
tion for the particle density decay (d,dUC<4) is

r.
12d/4

Qt
, ~30!

predicting the asymptotic decay exponentn51 for Coulomb
systems, as in the mean-field regime, although with aQ-
rather thanK-determined amplitude. This large-t limit is
achieved when

t.tL5
1

2D F2D~12d/4!

Q G4/~42d!

, ~31!

and it can be easily seen that in the limit ofQ→0 ~vanishing
interactions! the transition timetL to this region becomes
infinite, i.e., this time is never reached.

If diffusion is faster than the deterministic Coulom
interaction-driven relaxation, i.e.,D.Q, then for times less
than tL , the annihilation is governed by the intermedia
asymptotics

Q5
1

~12d/4!D
~2Dt !12d/4, ~32!

so the particle density is described by the Toussaint-Wilc
solution up to the crossover timetL :

r5Q̇.~Dt !2d/4. ~33!

This intermediate asymptotics, which exists only ford,4,
reflects early times diffusion-dominated decay, with t
slower deterministic Coulomb interaction-driven classi
t21 decay appearing only at times later thantL . In contrast,
for D,Q or if d.4, there is no extended intermediate r
gime and one should see a quick transition to a class
decay law. Although within the self-consistent approxim
.
t

l-

e

k

l

-
al
-

tion the asymptotic 1/t decay is not affected by the choice o
reasonable initial conditions, the intermediate diffusio
dominated decay is certainly affected by our choice of r
dom Gaussian uncorrelated initial conditions given in E
~15!. For instance, if the screened Debye-Hu¨ckel initial con-
ditions are used withD(k)5D0k

2/(k21ks
2), then thisD(k)

will appear as a multiplicative kernel under thek integral in
Eq. ~21!. It will then modify the intermediate decay expone
from d/4 to n5(d12)/4 ~and, for d.2, eliminating this
intermediate region altogether!, without modifying the as-
ymptotic decay of Eq.~30!. To sum up, we find that within
the self-consistent approximation, Coulombic syste
(n5d21) asymptotically exhibit thet21 density decay,
consistent with several scaling arguments and simulati
@24–26,33#.

D. Intermediate systems

Let us now consider the general case of long-range in
actions with a power-lawd21,n,` that is of shorter
range~weaker! than the Coulomb interaction considered
the preceding subsection. Equations~12! and ~13! can be
solved to yield

f ~k,t !5 f ~k,0!expS 2Dk2t2Qk22sE
0

t

r~t!dt D , ~34!

dr

dt
1Kr25KE ddk

~2p!d
expS 22Dk2t22Qk22sE

0

t

r~t!dt D ,
~35!

wheres5d2n11.
Equation~35! is significantly more complicated than it

analogs for either Coulombic or noninteracting cases. N
ertheless, it is possible to find its power-law asymptotic
lutions. Using an asymptotic analysis analogous to that
scribed in Sec. III C, we find several kinetic regim
depending on the values ofd andn. These regimes depen
crucially on the charge density relaxation mechanism, i
whether the LRI or diffusion determines the relaxation ra
of f (k,t) at late times. In order to analyze the asympto
behavior of the system, we again introduce the integra
densityQ(t) as defined in Eq.~22!. We also assume a powe
law for the density and, ford,4, neglect the termdr/dt. In
this case, the equations of motion are

dQ

dt
5AE ddk

~2p!d
exp@22Dk2t22Qk22sQ~ t !#,

~36!

r~ t !5
dQ

dt
. ~37!

Depending ons andd, either the first or the second term i
the exponential in Eq.~36! dominates for larget, correspond-
ing to either diffusive or superdiffusive relaxation. We fir
assume that diffusive relaxation is prevalent and determ
the conditions when it is true. In the case of diffusive rela
ation mechanism and at larget, Eq. ~36! can be simplified to
yield
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dQ

dt
5Akd~Dt !

2d/2E
0

`

xd/221dxexpS 2x2
2QQ~ t !

~2Dt !12s/2 x
12s/2D , ~38!
io
d
al
n

is

e rite
wherekd is a dimensionless constant absorbing integrat
over angular variables and the integral becomes time in
pendent for larget if the second term in the exponenti
vanishes with time. If we assume the power-law depende
for r andQ,

r~ t !}t2n, ~39!

Q~ t !}t12n, ~40!

then it follows from Eq.~38! that for the predominantly dif-
fusive systemn5d/4, as expected. Thus, in order for th
solution to be self-consistent, we must require that

12n,12s/2, ~41!

s.d/2, ~42!

and, from the definition ofs, we determine the region wher
the relaxation and density decay are diffusion limited:
y

b

te
n
e-

ce

n.11d/2, ~43!

d,4 . ~44!

This region is marked FD~fluctuation-dominated! in Fig. 1.
In it, the LRIs are irrelevant at larget, although they may
influence the density decay kinetics for intermediatet. The
asymptotic decay law in the FD region is given by

r.~Dt !2d/4. ~45!

In the region referred to as the IR~intermediate region!,
which lies below FD in Fig. 1 (d21<n<11d/2), the LRIs
are strong and dominate the diffusion at larget. To investi-
gate the asymptotics of the decay in this region, we rew
Eq. ~36! as
A~12n!t2n5Akd~QAt
12n!2d/~22s!E

0

`

x[d/~22s!]21dxexpS 2x2
2Dt

~2QAt12n!2/~22s! x
2/~22s!D , ~46!
ate
w in

a-
ge
ith
ing
the
ith

ons
on
den-
ki-
otic

f

our
usingQ5At12n. By solving Eq.~46! approximately we find
two asymptotics in this region:

r~ t !.~Dt !2d/4, ~47!

valid at intermediate times, and

r~ t !.~Qt!2n, ~48!

where

n5
d

41d22s
5

d

22d12n
~49!

for asymptotically large times.
The crossover timetc from the diffusion-dominated deca

to the LRI-dominated decay is

tc'D ~22d12n!/~21d2n!Q22/~11d/22n!. ~50!

Thus, in this region~marked IR in Fig. 1! the LRI accelerates
the relaxation of the initial density fluctuations and there
speed up the annihilation. IfQ,D, the diffusive relaxation
and thed/4 law may be observed for the intermediatet be-
fore the transition to the superdiffusive relaxation and fas
decay takes place fort.tc .
y

r

If d.4 @the mean-field~MF! region in Fig. 1#, spatial
fluctuations become irrelevant and the classical kinetic-r
equation becomes asymptotically correct, so the decay la
this region is given by

r~ t !.~Kt !21, ~51!

as previously discussed.

IV. SUMMARY AND CONCLUSIONS

In the present work we derive approximate kinetic equ
tions for the annihilation-diffusion process with long-ran
forces. To analyze the asymptotic decay law for systems w
d.2, we proposed a self-consistent method of calculat
the average particle density as a function of time. Since
total particle density is a nonconserved order parameter w
positive average at all times, we argued that its fluctuati
are less important in determining dynamics of annihilati
than that of a conserved order parameter — the charge
sity. This approximation self-consistently decouples two
netic equations and makes it possible to find the asympt
solutions. In the limit of weak long-range interaction~via
taking eithern→` or Q→0), self-consistent equations o
motion are reduced to those of Toussaint and Wilczek@5#.

For Coulombic systems in more than two dimensions,
model yields the mean-field exponentn51, yet the role of
segregation~i.e., charge density fluctuations! is important
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and cannot be simply left out. Ispolatov and Krapivsky@25#
proposed the unpenetrable domain scaling concept, which
the Coulombic case results in decay exponent 1 indepe
dently of space dimensionality. Both their model and ou
self-consistent approximation neglect possible fluctuatio
modes due to the spatial variation of particle density, as w
as noise, which can lead to some slowing down of the rea
tion kinetics, as indicated by simulations. Elucidation of suc
modes and their role should require a detailed account
noise and possibly use of a renormalization-group analy
when d52, since it is the critical dimension for the
annihilation-diffusion problem. Since neglecting noise in th
problem appears to be justified for long-time asymptotics f
systems withd.2 @31#, it is possible that the exponent
n51 for d.2 Coulombic systems is exact, even thoug
there is no experimental evidence to support this conclusio

FIG. 1. Phase diagram of the annihilation-diffusion reactio
with long-range forces. FR, forbidden region~below the Coulombic
line!; IR, intermediate region, where the large-t asymptotics is de-
termined by the LRI, FD, fluctuation-dominated region, where th
large-t asymptotics is determined by diffusion and initial fluctua
tions; MF, mean-field region, where the large-t asymptotics is de-
termined by the kinetic-rate equation.
s.
in
n-
r
n
ll
c-
h
of
is

r

n.

The analysis of the self-consistent equations of mot
~12! and ~13! suggests that there is a region in the (n,d)
phase diagram~the region labeled IR in Fig. 1! in which the
large-t asymptotics of the density decay is determined
long-range forces. The annihilation initally depletes the po
tively charged region of negative particles and vice ver
and then the decay rate is determined by the speed of par
drift from such regions. Again, our large-t asymptotics here
agrees with the unpenetrable domain theory of Ispolatov
Krapivsky, although their model predicts different boun
aries of the IR region in the (n,d) phase space (n511d/2 is
the upper boundary of the IR region in the self-consist
model andn5d is the upper boundary of the IR region in th
unpenetrable domain model; the lower boundary in b
theories is the Coulombic linen5d21). The self-consisten
theory also predicts a crossover from diffusion-domina
decay to the LRI-dominated decay at large times for the s
tems in this region.

Because the self-consistent model is a semi-mean-fi
approximation~it completely neglects particle density fluc
tuations and takes into account only the concerved cha
density fluctuations!, it should be considered only as a fir
step. A systematic perturbative analysis of Eqs.~10! and~11!
around our self-consistent solution is needed to assess
role of neglected number density fluctuations and noise@31#.

The proposed self-consistent model, its somewhat unc
trolled approximations notwithstanding, represents an imp
tant tool in the qualitative analysis of dynamic processes
two-component systems with one conserved and one n
conserved variable. It predicts different annihilation behav
~IR regime! and different crossovers between diffusio
driven and LRI-driven decay regions, reproduces all kno
results for the annihilation problem in special limits, and c
be used to systematically study the role of initial conditio
in such processes.
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