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Self-consistent model of an annihilation-diffusion reaction with long-range interactions
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We introduce coarse-grained hydrodynamic equations of motion for a diffusion-annihilation system with a
power-law long-range interaction. By taking into account fluctuations of the conserved order parameter —
charge density — we derive an analytically solvable approximation for the nonconserved order parameter —
total particle density. Asymptotic solutions are obtained for the case of random Gaussian initial conditions and
for system dimensionalitg=2. Larget, intermediate; and smallt asymptotics were calculated and com-
pared with existing scaling theories, exact results, and simulation [(&t863-651X97)02901-3

PACS numbeis): PACS: 05.60+w, 82.40—g, 61.30Jf

I. INTRODUCTION with the larget asymptotics given by

In recent years, the annihilation-diffusion problem has p(t)=(Kt)~4, 2

generated significant interest, both theoretical and experi-h ci i tant. Equation letel
mental. The annihilation-diffusion problem usually corre- WNEreA IS a reaction constant. Equa igh) completely ne-

- : ; ; lects all spatial fluctuations and correlations of the particle
sponds to that of the kinetics of particle density decay in thed €Ct : .
annihilation reactionA+A—J (one-species annihilatipn _densny. Altr;)ough the dynamp_s dlescrlbeddpy E(qﬁand](CZ)
andA+B—Q (two-species annihilation|n the latter case, 'S correct above an upper critical space dimensigg, for

in most physical systems that one is interested in, in additior(?TdUC ,bbtotht_dll;‘fus:on_and dfluctut?]tlor;s pl_atly Zn |mp<|)trtant
to the thermal diffusion and kinetic annihilation, partickes role, substantially slowing down the density decay. It was

and B are charged and interact via a power-law Iong-rangéndeed showni5] that for the one-species annihilation with-

interaction (LRI), usually of Coulomb type, although here out a LRI thedyc=2. '_I'hat IS, for systems of dimensionality
we will consider a more general LRI. Such physically impor- €SS than 2, the density decay is given by

tant interaction clearly can strongly influence the annihilation (1) = po(D pZd) 12 3)
dynamics by introducing an additional time scale in the an- P Pol=Po '

nihilation process and can lead to a new mechanism for slo\here D is diffusion constant ang, is the initial particle

dynamics. The two-species annihilation reaction with theyensity. Equatiori3) can be understood either by invoking a
LRI can be studied in a variety of experiments. A thermalsmg|e length scaling argumef&] or by using a more elabo-

quench of a freely suspended liquid-crystal film from the ae Smoluchowski approagB,7]. For the two-species case,
smecticA to the smectic= phase[1,2] is one experimental it was shown(Refs.[5,8—11) that the upper critical dimen-

system where this annihilation process has been studied Gond,.=4, and that ford<4, the large: asymptotics is
great detail. In such experiments, immediately after quench,

the singularities of the smectic directétwo-dimensional p(t)=(po) Y4 Dt) 94, (4)
vectoy field appear as positive and negative vortices inter-
acting (due to elastic forcgsvia a logarithmic potential. As The decay law4) was confirmed in several numerical simu-
time elapses, vortices of opposite sign slowly annihilate, exiations of one-, two-, and three-dimensional systems
hibiting complex dynamics that is clearly and strongly influ- [5,12,13. It is important to emphasize that in order to ob-
enced by temperature, an initial particle distribution, and aerve such power-law decay, it is necessary initially to have
LRI that leads to an attraction between annihilating partnersan equal number of positive and negative charges, distributed
Similar annihilation problems also appear in turbulent flow,at random. If initial numbers of positive and negative
superconductivity, spinodal decomposition, and many othecharges are different, one should observe an exponential den-
condensed-matter systems. The annihilation process is alsity decay to the nonvacuum equilibriufsee, e.g.[14]). If
relevant to coarsening of topological defects produced by #e system is stirred well, i.e., long-wavelength fluctuations
symmetry-breaking field in particle physics models, after arof charge density are suppressed, the decay law would also
early temperature quench due to the fast initial universe exbe different. We will not consider such cases in this paper.
pansion, a process that is thought in part to determine the To better study the role of correlations in reactions with-
large-scale structure of today’s univer§g] out a LRI, a description in terms of secondary quantization
It is well known that in classical chemical kinetics, den- operators of creation and annihilation was propdseg16.
sity decay for both one-species and two-species annihilatiorRurther developing this approach, Pelifi7] proposed an
is described by the kinetic rate equati@ee, e.g9.[4]) “exact” (valid to all orders in perturbation expansjon
renormalization-group theory for the one-species annihila-
tion and Lee and Cardyi8] suggested a similar approach to
the two-species annihilation, both based on the rigorous mas-
ter equation converted into a field-theoretic formulation. In

dp )
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the latter case, it was shown that the decay l[@vis an The paper is organized as follows. In Sec. 1l we define all
asymptotic one for largé and smallp,. It was also rigor- variables and present the equations of motion on which our
ously proven that the assumptions used in the derivation ginalysis and results will be based. In Sec. lll the self-
Eq. (4) are correct only fod=2, while for d<2, a more consistent approximation is described and the asymptotic so-
elaborate renormalization-group procedure that includes alytions are obtained and analyzed. Finally, in Sec. IV we
effective noise with nontrivial correlations should be carried@nalyze the resulting phase diagram and discuss it in the
out. context of the previously obtained results for various
The addition of the LRI further complicates the picture. diffusion—annihilation systems, which are selected points on
Equations of motion become strongly coupled via the nonloQUr phase diagram.
cal interaction and only approximate solutions of these equa-
tions can be found. Up to date, only Coulomfl®] systems Il. EQUATIONS OF MOTION
in two dimensions =2, n=1, the case corresponding to
particles interacting via a logarithmic potential on a two-
dimensional substrate or filmwere studied numericall A . 27
[13,20—-22 and results appear to be inconclusive. In thﬁs&av!ng a negative charge g. _We label their time- and
simulations, the particle density exhibited a power-law deca)posmpn-dependent con_centratlonsrq(sr,t) andn;(r,t), re-
p(t)~t~ " with the exponeni varying from 0.7% 0.04[22] spectively, and Impose the cpndltlon 'that
to 0.85+ 0.05[13]. Ginzburget al. proposed a scaling theory (nq(r,t=0))=(ny(r,t=0))=no. The equation of motion
[13,23 suggesting that for a Coulombic€d—1) two- for the de_nsme_s is based on th(_a _generallzed law of mass
dimensional diffusion-annihilation system, annihilation ex_conservatlon, violated by the annihilation process
ponent is equal to 0.85, which is close to but less than the
mean-field exponent= 1. Oshaniret al.[24] suggested that
the exponent should be exactly 1; Ispolatov and Krapivsky
[25] came to the same conclusion using an “inpenetrable L
domain” scaling theory. In their theoretical and computa—Where the mass current is given by
tional study of the defect annihilation in two-dimensional
XY model, Yurkeet al.[26] argued that the annihilation ex-
ponent is 1, with logarithmic correction due to the logarith- ;4
mic dependence of the mobility on the defect size. Thus the
problem of annihilation behavior for the Coulombic system ny(r',t)—ny(r',t)
in two dimensions has not been completely resolved, al- V(r,t)=qf ddr’ T W)
though it seems rather plausible that the final asymptotics is
governed by a classical exponent 1, with possible logarith
mic correction. It seems to be certain, however, that annihi

lation in the three-dimensional Coulombic system has g,q power exponent of the long-range forge,is particle
mean-field-type final asymptotics with exponent 1. mobility taken to be a constant, anglis particle charge.

Finally, we should point out that until recently, there has . _ - . : LS
been no discussion of the LRI other than Coulombic. Re_Equat|ons(5) (7) should be solved in conjunction with ini

il veral ling theories have been ted t tial conditions forn,(r,t=0) andn,(r,t=0). Since here we
Ici ¥h s€ rgitarl fca vg r-Ief/)v ?nst ra 3 o(nn?ler Sur?gr?sren odan&_—e interested in statistical averages, rather than in a dynamic
t{} e Ce ? ba¢3[/2%°25822a8 r? ac bl ore short rangea ) \tion for a given system with specific initial conditions,
than Loulombl 49,2 4. SUCH problems may arise, €.9., \ya i focus on the density correlation functions, with av-
in describing interactions between vacancies and mterstrualarages over random= 0 initial conditions
Ina tWC.)' or three-dimensional crystal. . Equations(5) and (6) represent the coarse-grained con-
In this paper, we propose a self-consistent theory based %h

coarse-arained hvdrodvnamic equations of motion for par uum limit for the “real” equations of motion; all variables
9 y y 9 Part, these equations are averaged over “elementary volume”

ticle number density and charge density fields. This theory _1 Th v lona- lenath d wually de-
allows us to systematically calculate the dependence of the? us only fong-wavelength moces are actualy de
density decay law on initial conditions and to investigate thes.CrIbEd by thes? equations and therefore only intermediate-
role of the LRI. It can be show[B1] that the self-consistent t|me_and large-time regimes can be analyze_d. .
approximation that we employ here is equivalent to a resum: Itis more natu_ral and convenient to descnb.e. the system in
mation of an infinite class of Feynman graphs, which takderms of the particle number and charge densities. We denote
into account the conserved charge density fluctuations bJ‘Pe former one asp(_r.,t) and the latter one af(r,t) and
ignore the less important nonconserved number density ﬂuc,r—GI"’lte them to densities, andn, as

tuations. This approximation can be further systematically 1

improved by the use of perturbation theory and the renormal- p(r,t)==[ny(r,t)+ny(r,t)], (8)
ization group analysis that is planned to be the subject of 2
future work [31]. In the limit of weak long-range interac-
tions, this approach agrees well with the known theoretical
results(see Refs[5,18,28—30) for the two-species annihila-
tion A+B—, thereby further clarifying the underlying as-

sumptions that led to these results. Rewriting Eqs.(5)—(7) using densitie andp, we obtain

Let us consider a system consisting of two kinds of par-
ticles, A and B, with A having a positive charge-q andB

an;(r,t)
at

+V-Ji=—=Kny(r,t)ny(r,t), (5)

Ji=—=DVni(r,t) — uqini(r, ) VV(r,t) (6)

is the electrostatic long-range potential at a pairgt time
t due to local charge fluctuations away from neutralityis

1
f(l’,t)ZE[nl(r,t)—nz(l’,t)]. (9)
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ap(r,t) lll. SELF-CONSISTENT APPROXIMATION
P DV2p(r,t)=—K[p2(r,t)—f2(r,t)] AND SOLUTIONS OF THE EQUATIONS OF MOTION

A. Self-consistent approximation

f(r',t
—QV<f(f.t)Vf ddr’ﬁ), We now make an important approximation in order to
further simplify the analytical treatment of Eq6l0) and
(10 (12), namely, we choose to ignore the fluctuations of the
particle densityp and concentrate on the fluctuations of the
conserved charge densify This assumption is somewhat
) 3 o, fay similar in spirit to the approach of Glotzer and ConidI&2]
—DVI(r,)=—=QV| p(r,n)V | dr =" 1) for the problem of spinodal decomposition and to the spheri-
(12) cal approximation for the Ising model in the limit of
N—o. Unlike the “classical” mean-field approach, how-
ever, the proposed approximation does take into account ex-
whereQ=31uq°. actly the charge density fluctuations, and is expected, there-
In the absence of a LRI, Eq$10) and (11) are those fore, to describe at least some of the features of the
analyzed in Refd5,11,18,30. However, the presence of the fluctuation-dominated kinetics.
additional long-range interactions makes the analysis of their The justification of the proposed assumption lies in a
asymptotic solutions rather nontrivial and, as we will showsimple observation that, while the average particle density at
below, leads to different dynamic regimes. any time is nonzero, so thdtp—(p))?)/(p)? is finite and
It is important to note that Eq910) and (11) do not likely to be small, the average charge density is always zero
contain noise terms on their right-hand sides. It has beefnd, therefore, in comparison the charge fluctuations
rigorously shown that such noise terms represent importarf(f —(f))?) are large. Thus we expect the former fluctuations
correlations and in some cases may even become predonip be less important that the latter, and we can approximate
nant in determining the asymptotic decay rate. In equationghe particle number density by its averagiene-dependent
of motion describing a near-equilibrium dynamics, a power-value in the equations of motion without losing their impor-
ful fluctuation-dissipation theorem determines the form oftant features. In a sense, our approximation is a generaliza-
noise correlations. In contrast, in systems far from equilibtion of an argument used by Toussaint and Wilcggk in
rium, such as a system of annihilating particles, it can bevhich they based their scaling decay law on a suggestion
shown[18,31] that the effective hydrodynamic equations of that (p)~{p?). It seems clear that the approximation of
motion derived from the fundametal master equations conignoring the number density fluctuations must break down at
tain noise terms with very nontrivial correlations, of a form least below some upper-critical dimensidyjc since asymp-
that could not be easily guessadgbriori. Lee and Cardy18] totically p vanishes. In this case our approximation will be
proved that in a two-species reaction without a LRI, suchvalid for d>dc for all times and in systems belody,c it
noise leads only to the renormalization of the reaction ratevill be a good approximation up to a crossover time beyond
K, but not to the change of the scaling exponents, provideavhich the asymptotics will be modified by the number den-
that space dimensionality>2. We have shown, in a similar sity fluctuations. Systematically taking into account these ad-
fashion[31], that for systems with a LRI, the noise has no ditional fluctuations will be a subject of future wofR1].
effect on the asymptotic dynamics fdr2, if the renormal- Taking into account the above approximation, we rewrite
ization of bothX and Q is implied. In addition, since Eqgs. Eg. (11) in Fourier representation, takingt) as a spatially
(10) and (11) provide a coarse-grained description on theindependent but time-dependent function
length scale larger than the interparticle spac@ra‘d’d, the
kinetic coefficients, e.g.IC, are effective coefficients that
incorporate finite renormalization due to the correlations on
short length scales.
In order to simplify further analysis, we divide each of the
equations(10) and (11) by py and transform everything to
dimensionless variables as

af(r,t)
ot

9
E+Dk2+Qp(t)k2")f(k,t):O, (12

whereo=d+ 1—n. Equation(10) in this self-consistent ap-
proximation is rewritten as

dp ddk
p—plpo, f—flps, D—D(pg)*, EHCPZ:ICJ Wﬁ(k,t)f(—k,t)), (13
K—Kpg, r—r(po)?d, Q—Q(pg) "t/ where() denotes averaging over initial conditions.

These equations of motion have to be supplemented with
It is important to notice that Eq11) is linear with respect to  jnitial conditions. It is well known that the initial density
f, while Eq.(10) is quadratic with respect tb(this points to  distribution plays an important role in determining the scal-
the system’s invariance with respect to the simultaneouthg decay law. Although the self-consistent approximation
charge sign reversal for all particlesn the next section, we employed here is well suited for a comprehensive study of
will describe the self-consistent approximation and its soluthe influence of initial conditions on the dynamics, here we
tions. limit our study to a single type of initial condition. Through-
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out this paper we will focus on the dynamics initiated with ations stronger than Coulombic have infinite pressure and
random Gaussian particle distribution, completely characterehemical potential even if their total charge is 2e®ecause

ized by
(f(k,0)=0, (149
(f(ky,00f(k;,0))=A(2m)%6'V (ks +kp), (15

which constrains the system to charge neutrality at all time
and for simplicity we take the variancde=1 (= p(2) in physi-

cal unit9. For most charged experimental systems more rel
evant initial conditions incorporate the suppression of long
wavelength fluctuations in charge density, which can b

modeled(within, e.g., the Debye-Htkel approximatioh by
A(K)=Agk?/(k?+Kk2) in Eq. (15).
The diffusion-only (DO) case Q=0) and Coulombic

case =d—1) are the simplest systems with a relatively
clear, yet interesting asymptotic behavior. All the intermedi-

ate interactiongarbitraryn andd) lead to a more compli-

S

e

of this, one would expect the particle density decay for Cou-
lombic systems to be very close or equal to the mean-field
law p(t)~(Kt)~! [33]. As we describe below, the self-
consistent approximation predicts the decay expomenl
consistent with this expectation and with some simulations
reported in the literaturf26]. However, it can be showf31]

that a correction to this mean-field-like decay law can arise
from the number density fluctuations and noise @b&2,

both of which have been neglected in the self-consistent

theory presented here.

The equation for the evolution of charge denditior the
Coulombic systems in the self-consistent approximation can
be exactly solved to yield

f(k,t):f(k,O)exp( - Dkzt—QJtp(T)dT). (20)
0

cated scaling behavior, with several regimes and CrossoVerfysing this solution(20) and the initial condition(14) and

We will devote a subsection to each of these three cases.

B. Systems without long-range interactions

There are two ways of approaching the limit of “no long-
range interactions”: by decreasing the force cons@uib O
or by increasing the power exponanto infinity (interaction
with an effectively vanishing rangeObviously, these limits
should give the same answer. For simplicity,

(15), p(t) can be easily shown to satisfy the differential
equation
%+ kpt=Kex] -2 ft d J o’k
at P—eX—QOP(T)T 27

X exp( —2Dk?t), (22)

we will set;, o qer to find the asymptotic solutions, we introduce a

Q=0 and show that our self-consistent approximation yield%ariable

the well-known result$5—-11]

(Kt)~* for d>4
(Dt)~ 9 for d<4. (16
17)

For Q=0, the kinetic equation fof reduces to a simple
diffusion equation, with the solution

p(t)=

f(k,t)="f(k,0)e Pk, (18)
Substituting this solutior{18) for f(k,t) into Eqg. (13) and
taking into account the initial conditiond4) and (15), we
obtain

K

dp+l€ 2=
P = 1+2D0) 7

dt (19

t
®=fop(7')d7'. (22

Equation(21) then transforms to

2
Zexq—2Q®)mﬁ. (23)

d?e
ae +K

de
dt

Let us find the “critical” dimensiondyc, above which the
mean-field behavior is manifested. The mean-field solution
for @ is given by

®(t)=%ln(1+l€t)+-~-, (249

where the ellipsis corresponds to subdominant constant terms

The exact solution expressible in terms of confluent hyper@nd terms decreasing with time. By counting powers of

geometric functions is possible8]. It can also be easily
shown that Eq(17) describes the asymptotic solution of Eq.

the right-hand sidéRHS) and the left-hand sid€LHS) of
Eqg. (23), we find that the power of the LHS is2 and the

(19). This is expected since, as we argued above, the aower of the RHS is—d/2—2(Q/K). Obviously, for the

proximations made by Toussaint and WilcZéX are very
similar to our self-consistent model. The casenef~ will
be analyzed in Sec. llI D, where it will be shown that for all

mean-field solution to be valid asymptotically, the power of
the LHS should be larger than the power of the RHS, which
happens for systems with dimensionality larger than the criti-

n>1+d/2, the decay law is asymptotically the same as forc@l dimension,

DO systems.

C. Coulombic systems

1- 9) . (25

d>dUC:4< IC

In Coulombic systems, the long-range interaction is thdf Q= I, the asymptotic kinetics is determined by the slower
strongest possible that one can achieve without making thprocess, which is the annihilation, with possibly the interac-

system thermodynamically unstabsystems with interac-

tion renormalizedC (implicitly assumed hepe and the Cou-
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lomb interaction and diffusion are asymptotically irrelevant.tion the asymptotic 1/decay is not affected by the choice of
For Q< K, the Coulomb interaction has an interesting effectreasonable initial conditions, the intermediate diffusion-
of continuously lowering the upper-critical dimension from dominated decay is certainly affected by our choice of ran-
4 (for Q/K=0, in which case fod<4 the diffusion domi- dom Gaussian uncorrelated initial conditions given in Eg.
nates givingyv=d/4) down todc given above. (15). For instance, if the screened DebyeeHel initial con-
In order to analyze the kinetics when space dimensionalditions are used with (k) = A ok?/ (k?+k2), then thisA (k)

ity d is belowdyc we employ the “steady-state” approxi- will appear as a multiplicative kernel under thentegral in
mation, which suggests that at long times the time derivativéEq. (21). It will then modify the intermediate decay exponent
on the LHS of Eq(21) is the smallest of the three terms. In from d/4 to v=(d+2)/4 (and, ford>2, eliminating this

this case, the equation of motion can be written as

@=exq—Q®)(1+2Dt)‘d’4,

dt 26

0(0)=0. (27)

An exact solution of this equation is

1
—In| 1 Q

0=5" 1" 25a—dm)

({1+2Dt}1"9%—1)| (298

and

p=6. (29

It can be easily shown that for largethe asymptotic solu-
tion for the particle density decayldyc<4) is

1-d/4

Qt ’
predicting the asymptotic decay exponent1 for Coulomb
systems, as in the mean-field regime, although witp-a

rather than/C-determined amplitude. This largelimit is
achieved when

p= (30

4i(4-d)
: (31

1

1 [2D(1-d/4)
= | =

Q

and it can be easily seen that in the limit@f 0 (vanishing

t>t,

interaction$ the transition timet, to this region becomes

infinite, i.e., this time is never reached.

intermediate region altogetherwithout modifying the as-
ymptotic decay of Eq(30). To sum up, we find that within
the self-consistent approximation, Coulombic systems
(n=d—1) asymptotically exhibit thet™! density decay,
consistent with several scaling arguments and simulations
[24-26,33.

D. Intermediate systems

Let us now consider the general case of long-range inter-
actions with a power-lawd—1<n< that is of shorter
range (weakej than the Coulomb interaction considered in
the preceding subsection. Equatiofi®) and (13) can be
solved to yield

f(k,t)=f(k,0)ex;< _Dkzt_ka_Uftp(T)dT), (39
0

o, Z—Kf d% 2DK2t—2 kZ—Uft d
at TR ) X Q OP(T) 7|,

(39

whereo=d—n+1.

Equation(35) is significantly more complicated than its
analogs for either Coulombic or noninteracting cases. Nev-
ertheless, it is possible to find its power-law asymptotic so-
lutions. Using an asymptotic analysis analogous to that de-
scribed in Sec. llIC, we find several kinetic regimes
depending on the values dfandn. These regimes depend
crucially on the charge density relaxation mechanism, i.e.,
whether the LRI or diffusion determines the relaxation rate
of f(k,t) at late times. In order to analyze the asymptotic

If diffusion is faster than the deterministic Coulomb behavior of the system, we again introduce the integrated

interaction-driven relaxation, i.eD>Q, then for times less

density® (t) as defined in Eq.22). We also assume a power

than t_, the annihilation is governed by the intermediatelaw for the density and, foil <4, neglect the terndp/dt. In

asymptotics

¢) (2Dt)1~ 94, (32

~ (1—d/4)D

so the particle density is described by the Toussaint-Wilczek

solution up to the crossover timig:
p=0=(Dt)" 9, (33)

This intermediate asymptotics, which exists only x4,

this case, the equations of motion are

de d%
5= \/J (2—77_)dex|:[—2Dk2t—2Qk2_"®(t)],
(36)
de
()= (37)

Depending oro andd, either the first or the second term in

reflects early times diffusion-dominated decay, with thethe exponential in Eq.36) dominates for largé, correspond-
slower deterministic Coulomb interaction-driven classicaling to either diffusive or superdiffusive relaxation. We first

t~* decay appearing only at times later than In contrast,

assume that diffusive relaxation is prevalent and determine

for D<Q or if d>4, there is no extended intermediate re-the conditions when it is true. In the case of diffusive relax-
gime and one should see a quick transition to a classicaltion mechanism and at largeEq. (36) can be simplified to
decay law. Although within the self-consistent approxima-yield
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de \/ E 2Q0(t)
— —d/2 dr2—-1 v 1-0/2
T kq(Dt) Jo X dxex;{ X Wx , (38
|
whereky is a dimensionless constant absorbing integration n>1+d/2, (43

over angular variables and the integral becomes time inde-
pendent for large if the second term in the exponential

vanishes with time. If we assume the power-law dependence d<4. (44)
for p and G,
p(t)ect™, (39)  This region is marked Ffluctuation-dominatexin Fig. 1.
In it, the LRIs are irrelevant at large although they may
O(t)octl™?, (40) influence the density decay kinetics for intermediatd&@he

asymptotic decay law in the FD region is given by
then it follows from Eq.(38) that for the predominantly dif-

fusive systemw=d/4, as expected. Thus, in order for this _da
solution to be self-consistent, we must require that p=(Dt)~ ™" (45)

1-v<l1—-0/2, (41 . . .
In the region referred to as the IRntermediate region

o>d/2, (42)  which lies below FD in Fig. 1¢—1<n=<1+d/2), the LRIs
are strong and dominate the diffusion at latgdo investi-
and, from the definition ofr, we determine the region where gate the asymptotics of the decay in this region, we rewrite
the relaxation and density decay are diffusion limited: Eq. (36) as

o 2Dt
A(l—p)t 7= \/kd(QAtl")d’(z") fo x[d’(z””ldxexp( —Xx— (20AL "Iz o) x#2=o) ), (46)

using® =At!~”. By solving Eq.(46) approximately we find If d>4 [the mean-field MF) region in Fig. 1, spatial

two asymptotics in this region: fluctuations become irrelevant and the classical kinetic-rate
equation becomes asymptotically correct, so the decay law in
p(t)=(Dt)~ 94, (47  this region is given by
—_~ -1
valid at intermediate times, and p(t)=(Kt)"", (5D)

as previously discussed.
p(H)=(Qt)"", (48)
IV. SUMMARY AND CONCLUSIONS
where
In the present work we derive approximate kinetic equa-
d d tions for the annihilation-diffusion process with long-range
= = (49)  forces. To analyze the asymptotic decay law for systems with
4+d—20 2—-d+2n ; .
d>2, we proposed a self-consistent method of calculating
_ _ the average particle density as a function of time. Since the
for asymptotically large times. , total particle density is a nonconserved order parameter with
The crossover timg from the diffusion-dominated decay positive average at all times, we argued that its fluctuations
to the LRI-dominated decay is are less important in determining dynamics of annihilation
than that of a conserved order parameter — the charge den-
sity. This approximation self-consistently decouples two ki-
netic equations and makes it possible to find the asymptotic
Thus, in this regiorimarked IR in Fig. 1the LRI accelerates solutions. In the limit of weak long-range interactigvia
the relaxation of the initial density fluctuations and therebytaking eithern—e or Q—0), self-consistent equations of
speed up the annihilation. <D, the diffusive relaxation motion are reduced to those of Toussaint and Wildzgk
and thed/4 law may be observed for the intermediatbe- For Coulombic systems in more than two dimensions, our
fore the transition to the superdiffusive relaxation and fastemodel yields the mean-field exponent 1, yet the role of
decay takes place far-t,. segregation(i.e., charge density fluctuationss important

14

t %D(2—d+2n)/(2+d—n)Q—2/(1+d/2—n) (50)
c .
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The analysis of the self-consistent equations of motion
e I (120 and (13) suggests that there is a region in thed)
phase diagranithe region labeled IR in Fig.)lin which the
large-t asymptotics of the density decay is determined by
r ] long-range forces. The annihilation initally depletes the posi-
tively charged region of negative particles and vice versa,
and then the decay rate is determined by the speed of particle
drift from such regions. Again, our largeasymptotics here
agrees with the unpenetrable domain theory of Ispolatov and
Krapivsky, although their model predicts different bound-
aries of the IR region in then(d) phase spacen=1+d/2 is
the upper boundary of the IR region in the self-consistent
model anch=d is the upper boundary of the IR region in the
S unpenetrable domain model; the lower boundary in both
0 ] 2 3 4 5 theories is the Coulombic line=d—1). The self-consistent
Space Dimensionality d theory also predicts a crossover from diffusion-dominated
decay to the LRI-dominated decay at large times for the sys-

FIG. 1. Phase diagram of the annihilation-diffusion reaction{®m$ in this region. _ _ _ _
with long-range forces. FR, forbidden regitirelow the Coulombic Because the self-consistent model is a semi-mean-field
line); IR, intermediate region, where the larg@symptotics is de- approximation(it completely neglects particle density fluc-
termined by the LRI, FD, fluctuation-dominated region, where thetuations and takes into account only the concerved charge
larget asymptotics is determined by diffusion and initial fluctua- density fluctuations it should be considered only as a first
tions; MF, mean-field region, where the largesymptotics is de- step. A systematic perturbative analysis of E4§) and(11)

Power Exponent n

termined by the kinetic-rate equation. around our self-consistent solution is needed to assess the
role of neglected number density fluctuations and n34¢:
and cannot be simply left out. Ispolatov and Krapiv§Rg] The proposed self-consistent model, its somewhat uncon-

proposed the unpenetrable domain scaling concept, which i#olled approximations notwithstanding, represents an impor-
the Coulombic case results in decay exponent 1 indeperfant tool in the qualitative analysis of dynamic processes in
dently of space dimensionality. Both their model and ourtWo-component systems with one conserved and one non-
self-consistent approximation neglect possible f|uctuatiorponserv_ed vanable._ It predicts different annihilation peh:_awor
modes due to the spatial variation of particle density, as welflR regimg and different crossovers between diffusion-
as noise, which can lead to some slowing down of the reacdriven and LRI-driven decay regions, reproduces all known
tion kinetics, as indicated by simulations. Elucidation of suchresults for the annihilation problem in special limits, and can
modes and their role should require a detailed account d_fe used to systematically study the role of initial conditions
noise and possibly use of a renormalization-group analysif such processes.

when d=2, since it is the critical dimension for the
annihilation-diffusion problem. Since neglecting noise in this
problem appears to be justified for long-time asymptotics for
systems withd>2 [31], it is possible that the exponent L. R. was supported by the National Science Foundation
v=1 for d>2 Coulombic systems is exact, even thoughthrough Grant No. DMR-9625111. We thank Dr. B. Lee and
there is no experimental evidence to support this conclusiorDr. G. Oshanin for helpful comments and suggestions.
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